中国电机行业的出口前景十分广阔

目前,全国减速机标准化委员会讨论通过了全国减标委十二五工作规划,明确十二五规划纲要:切实贯彻执行国民 详细

开启左侧

直流伺服电机的结构性能优化特点 功能介绍伺服电机解决方法

[复制链接]
电机网管理员 发表于 2020-6-4 16:13:10 | 显示全部楼层 |阅读模式 打印 上一主题 下一主题
通用交流伺服电机驱动器依据控制方法,一般分为三种控制信号模式:位置伺服,速度伺服,转矩伺服。较通用的控制方法为Pcommand及Vcommand。伺服控制器是由伺服电机和伺服驱动器两个部分组成,小型交流伺服电机一般采用永磁同步电机作为动力源。也有采用直流电机为动力源的,但目前已较少应用。早期由于直流电机的转矩特性比交流电机的转矩特性好,因此采用直流电机。由于现代变频技术的发展,交流电机 的转矩特性已接近直流电机的转矩特性,而直流电机又存在不易保养的特点,因此直流电机渐渐被交流电机所替代。所有的伺服电机必须有驱动器才能旋转,因此市面上所称伺服电机包含伺服驱动器。一组伺服电机由电机与驱动器匹配组成,由制造厂家将电机与驱动器匹配到最佳状态,用户最好不要随意混合搭配。另外,有些伺服电机专用控制器是针对伺服电机特殊应用而开发的,也可能专为某些产品而开发制造,采用哪种控制信号模式因设计师个人设计理念而定,或采用控制器与驱动器一体设计,或采用通信网络式远程控制,这些不是通用伺服电机讨论的范围,但工作理论及工作模式是相同的。Tcommand与Pcommand及Vcommand之间的用途差异较大,如应用于卷绕、检测等方面。伺服驱动器与伺服电机之间只要型号匹配,用户就无需考虑其控制信号模式;相对的,伺服控制器必须配合伺服驱动器,一般小型PLC控制器较常采用位置伺服控制模块,中大型PI。C控制器或专用控制器才有速度伺服模块可选用。
        随着集成电路电子电力技术的发展,伺服技术也有有了突破性的进展,在这个以节能减排为主题的社会中,电能短缺已成为工业生产中的一块心病,生产节能减排的生产机械迫在眉睫.自动化企业推出了满足节能型永磁同步电机,也就是称之为的伺服器。  伺服电机的日新月异,到目前为止,高性能的电伺服系统大多采用永磁同步型交流伺服电动机,控制驱动器多采用快速、准确定位的全数字位置伺服系统。它相比普通电机的优点:  1.定子绕组散热比较方便。  2.适应于高速大力矩工作状态。  3.同功率下有较小的体积和重量。  4.惯量小,易于提高系统的快速性。  5.无电刷和换向器,因此工作可靠,对维护和保养要求低。  经实际测算伺服电机驱动器比普通电机在省电方面:平均节省电能10%~20%以上,对纺织厂来说虽然首次投入成本略有增加,但半年左右的时间节省的电费足以收回增加的成本。以现在工业控制技术的发展程度,伺服电机已达到企业生产的要求:则它的基本概念是准确、精确、快速定位,是工业企业发展的最佳选择!通用变频器的应用范围不断扩大。通用变频器不仅在工业的各个行业广泛应用,就连家庭也逐渐成为通用变频器的应用市场。正因为通用变频器的应用范围不断扩大,使其产品向以下3个方向发展。  伺服电机驱动器无疑从特点和省资省力上就已经战胜了普通电机,从而随时间的推移慢慢的代替了普通电机,而且伺服电机采用“伺服驱动器+伺服电机”代替传统“异步电机+变频器+启动电路”的方案,不改变机械结构和电机安装方式的情况下,大大简化电气线路,可靠性更高。自20世纪80年代初问世以来,通用变频器更新换代了5次,第一代是20世纪80年代初的模拟式通用变频器,第二代是20世纪80年代中期的数字式通用变频器,第三代是20世纪90年代初的智能通用变频器,第四代是20世纪90年代中期的多功能通用变频器。21世纪研制上市了第五代集中型通用变频器。通用变频器的发展情况具有哪些特点。(1) 向通过简单控制就能运行的小型及操作方便的变频器方向发展。(2) 向大容量,高启动转矩及具有环境保护功能的变频器方向发展。(3) 向无需调速便能得到最佳运行的多功能和高性能变频器方向发展。控制方式不断发展。早期通用变频器大多数采用开环恒压比的控制方式,其优点是控制结构简单,成本较低,缺点是系统性能不高,比较适合应用在风机,水泵的调速场合,具体来说,其控制曲线随着负载的变化而变化,转矩响应慢,伺服电机转矩利用率不高,低速时因定子电阻和逆变死区特效的存在而使性能下降,稳定性变差等。
        伺服电机广泛应用于航空科技和航空电机系统,它能够在伺服系统中控制机械原件运转,是一种很小的辅助马达间接变速装置,伺服电机的转速受输入信号的控制,伺服电机厂家伺服电机厂家并能在最快的时间内做出反应,在自动控制系统中扮演着非常重要的角色,伺服电机具有机动时间段,线性度高,始动电压低的特点。伺服点击的定位位置非常准确,能够将电压信号转化为转矩和转速为驱动控制对象。
        在国外,对于步进系统,主要采用二相混合式步进电机及相应的细分驱动器。但在国内,广大用户对“细分”还不是特别了解,有的只是认为,细分是为了提高精度,其实不然,细分主要是改善电机的运行性能。  如果使用细分驱动器,在细分的状态下驱动该电机,电机每运行一微步,其绕组内的电流变化只有而不是,且电流是以正弦曲线规律变化,这样就大大的改善了电机的振动和噪音,因此,伺服电机控制器在性能上的优点才是细分的真正优点。由于细分驱动器要精确控制电机的相电流,所以对步进电机驱动器要有相当高的技术要求和工艺要求,成本亦会较高。  现说明如下:步进电机的细分控制是由驱动器精确控制步进电机的相电流来实现的,以二相电机为例,假如电机的额定相电流为,如果使用常规驱动器驱动该电机,电机每运行一步,其绕组内的;电流将从或从,相电流的巨大变化,必然会引起电机运行的振动和噪音。  注意,国内有一些驱动器采用“平滑”来取代细分,有的亦称为细分,但这不是真正的细分: 2.电机的相电流被平滑后,会引起电机力矩的下降,而细分控制不但不会引起电机力矩的下降,相反,力矩会有所增加。  1.“平滑”并不精确控制电机的相电流,只是把电流的变化率变缓一些,所以“平滑”并不产生微步,而细分的微步是可以用来精确定位.
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

关注0

粉丝0

帖子1443

发布主题
阅读排行更多+
用心服务创业者
400-456-7895
周一至周五 9:00-18:00
意见反馈:green@Kgh_tyr.com

扫一扫关注我们

Powered by Discuz! X3.2© 2001-2013 Comsenz Inc.